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Abstract

The hierarchical latent regression model (HLRM) is a flexible framework for estimating group-level

proficiency while taking into account the complex sample designs often found in large-scale

educational surveys. A complex assessment design in which information is collected at different

levels (such as student, school, and district), the model also provides a mechanism for estimating

group differences at various levels and for partitioning variance components among those levels.

This study examines parameter recovery in the HLRM and compares it to regular latent regression

models (LRMs) through simulation for various levels of cluster variation. Results show that

regression effect estimates are similar between the HLRM and the LRM, in particular under

small cluster variation. Similarly, student posterior mean estimates and marginal maximum

likelihood mean estimates for student groups are comparable across the two model approaches.

However, substantial differences are found for the residual variance estimates, the standard errors

for regression effect estimates and related standard errors for group estimates, and for students

posterior variance estimates. As expected, these differences are larger when the variation across

clusters is larger, since a substantial portion of variance remains unexplained in LRM.

Key words: Hierarchical latent regressions, item response theory, latent regressions, marginal

parameters estimation
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1 Introduction

Latent regression models (LRM) coupled with item response theory (IRT; Mislevy, 1984, 1985)

are widely used in large-scale educational survey assessments such as the National Assessment of

Educational Progress (NAEP) and the Trends in International Mathematics and Science Study

(TIMSS). The frameworks in these low-stakes assessments are broad and represented by a large

item pool, while the time available for testing students is limited. As a result, such assessments

are typically designed so that test takers each respond to a small portion of the item pool, but,

as a group, respond to the total item pool. Hence, reliable estimates of proficiency are limited

to the group level after appropriate horizontal equating has been conducted, usually through

IRT models. Latent regressions are used to predict the expectations of students’ latent abilities

from a complicated multistage stratification sample, using a collection of background variables

as predictors. In current applications (e.g., Allen, Donoghue, & Schoeps, 2001), test takers are

treated as if they were selected from a simple random sample. As a result, is that standard errors

for regression effect estimates are likely to be underestimated.

Since estimation of sampling variability of any statistic must take into account the sample

design (Cochran, 1977), concerns have been voiced about the use of standard errors based on a

simple random sample assumption and how this affects standard errors of group mean estimates

(e.g., Cohen & Jiang, 2002; von Davier & Sinharay, 2005). Under NAEP’s sampling design,

students nested in schools are sampled, constituting a relatively strong cluster effect. This is

because, on average, 20 to 25 students are selected from each sampled school, and students

within a school share curriculum and instruction experiences. Consequently, by ordinary LRM,

it is not possible to adequately capture the population estimates and their variability from a

clustered sample. In practice, the population estimates are deemed to be relatively robust against

violations of the assumption of independent observations, and post hoc techniques are applied

to infer correct standard errors, either via resampling methods (e.g., Johnson & Rust, 1992) or

linearization (Cohen & Jiang). However, the viability of these techniques has not been established

empirically, likely for lack of an appropriate hierarchical model for comparison.

The hierarchical linear model proposed by Raudenbush and Bryk (2002) has proven to be a

useful and effective approach, appropriate for analyzing data when observations within clusters

are correlated. Based on this work, Li and Oranje (2006) suggested a two-level latent regression

model coupled with IRT to analyze large-scale survey assessment data, where the LRM can be
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considered a special case of the more general HLRM. One advantage of this multilevel model is

that within-cluster correlations and across-cluster variation can be appropriately accounted for

by introducing random effects. Furthermore, under this approach, variability can be specified in

terms of variability of individual students within and across schools. Extension of the two-level

model to a more general and complicated HLRM is straightforward.

The current study is designed to examine how well parameters from an HLRM can be

recovered and how well this approach compares with the current LRM approach using simulation.

Additionally, the study examines how well subpopulation characteristics are estimated in the

HLRM (i.e., group mean estimates and their standard errors) and how well the estimates of group

effect parameters compare with those in the LRM. In the following sections, the family of HLRMs

and the estimation of HLRM parameters are briefly introduced. Subsequently, the simulation

study design is discussed, and the study results are examined. The final section is devoted to

discussion and conclusions.

2 Hierarchical Latent Regression Model

The multilevel IRT model proposed by Li and Oranje (2006) has a fixed-effect model at

Level 1 and an unconditional model at Level 2. That is, Level 1 incorporates a model that would

otherwise be used in the regular LRM, while Level 2 includes random effects along with fixed

effects. In this model, fixed regression effects represent the average of effects across clusters. This

formulation was chosen because it allows comparison of an HLRM to current implementations of

the regular LRM, where the fixed effects might be based on principal component scores instead

of group indicators themselves, as part of a data-reduction effort. Consequently, the resulting

regression effect estimates from the two-level HLRM can directly be compared to LRM estimates,

while the HLRM approach provides additional information: (a) the variance within clusters and

(b) the variance and covariance of random effects across clusters.

In this model, random effects across clusters are assumed and variation across clusters can be

characterized by a variance matrix T , through which the correlation between two students within

each cluster can be calculated. Since the discussion of hierarchical models involves sampling

clusters, the notation of clusters will be used to indicate the hierarchical or nested data structure.

Suppose there are nj students nested within J schools for j = 1, · · · , J , and their proficiencies

(θ1j to θnjj) are likely to be positively correlated. Let xij be the vector of Q population group
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indicators; that is, xij = (Xij1, Xij2, · · · , XijQ) for student i in school j. Correspondingly, the

regression effects for school j are denoted as γj = (γj1, · · · , γjQ)′, and the fixed regression effects

(or the overall regression effects across clusters) are denoted by γ = (γ1, · · · , γQ)′. The item

responses for student i in school j are denoted by yij . Therefore, the Level 1 model is

θij = xijγj + εij , (1)

where the residual term εij is assumed to be i.i.d., εij ∼ N(0, σ2). The Level 2 unconditional

model is given by

γj = γ + uj . (2)

Substituting (2) into (1) gives the combined model

θij = xijγ + xijuj + εij . (3)

The marginal variance of θij is xijTx′ij + σ2, where xijTx′ij is the variance component associated

with the random effects uj and attributable to the variation across schools. The residual variance

σ2 depicts the variation among students within schools. In this model, variation is decomposed

into a school-level and a student-level component. Suppose a student with latent ability θi′ comes

from the same school j as student i, then the covariance of student i and i′ can be written as

Cov(θij , θi′j) = xijTxi′j , (4)

and their correlation can be expressed as

Cor(θij , θi′j) =
xijTxi′j√

(xijTx′ij + σ2)(xi′jTx′i′j + σ2)
. (5)

For example, suppose two students are in the same school and their group indicators are given as

xij = (1, 0, 0, 0, 1, 1) and xi′j = (0, 1, 1, 0, 0, 0), respectively. Suppose also that the diagonal entries

of the T matrix are all .05 and off-diagonal entries are all .02, while the residual variance σ2 = .5.

In that case, the covariance between these two students is .12 and the correlation between them is

.17. For the same two students and the same value of σ2, changing the diagonal components of

the T matrix to .5 and the off-diagonal components to .2 (to represent a relatively large variance

and covariance across clusters) changes the covariance to 1.20, and the correlation between them

changes to .49. Similarly for the same two students, changing the diagonal components of T
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to .005 and the off-diagonal components to .002 (to represent a relatively small variance and

covariance across clusters) changes the covariance to .012, and the correlation between them

becomes .023.

The correlations will be larger when two students’ background variables share more common

values, which is often the case for two students in the same school. Note that when all the

components of the T matrix equal zero, the HLRM simplifies to the regular LRM. This implies

that there is no variation across clusters or there are no random effects across clusters. In other

words, all clusters in the concerned population are homogenous to one another, and the group

indicators do not have differential effects across these clusters or schools. In this sense, the HLRM

becomes a fixed latent regression model, and the LRM is a special case of the HLRM.

3 Parameter Estimation of HLRM

The procedures for estimating parameters in the HLRM have been developed using marginal

maximum likelihood (MML) methods. In the univariate case, the parameters γ, σ2, and T are

estimated from test-response data and student-group indicators. Li and Oranje (2006) developed

the MML estimates for these parameters, which involve sampling weights for clusters. A brief

summarization of the MML equations for the univariate case will be given in this section (see Li &

Oranje, 2006, for details and multivariate extensions); more details on this estimation procedure

can be seen in Appendix A.

Suppose the cluster random effects are uj for j = 1, · · · , J . The log likelihood function L over

all individual students and test item responses is

L = log




J∏

j=1

P (yj |θj , Xjγ + Xjuj , σ
2, T )wj




=
J∑

j=1

wj log
(∫

P (yj |θj , uj)φ(θ, uj |Xjγ + Xjuj , σ
2, T )dθjduj

)
(6)

where φ represents the normal density and wj represents the sampling weights for each school or

cluster. An EM algorithm (Dempster, Laird, & Rubin, 1977) can be used for estimation, where

in the maximization step the parameters γ, σ2, and T given the data (xij ,yij) can be obtained

through

γ̂ =




J∑

j=1

wj

nj∑

i=1

x′ijxij



−1

J∑

j=1

wj

nj∑

i=1

x′ij(θ̃ij − xijuj), (7)
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σ̂2 =

∑J
j=1 wj

∑nj

i=1 σ̃2
ij +

∑J
j=1 wj

∑nj

i=1(θ̃ij − xijγt − xijuj)2

N
, (8)

T̂ =
1∑J

j=1 wj

j∑

j=1

wj

[
C−1

jt σ2 + ũjũ
′
j + C−1

jt X ′
j

[
σ̃2

ij

]
XjC

−1
jt

]
. (9)

where θ̃ij in equation (7) represents the posterior mean of a student, and σ̃2
ij in (8) and (9)

represents the posterior variance. Hence, during the expectation step of the algorithm, posterior

moments need to be evaluated. The posterior expectation of the random effects, ũj , is given by

ũj = C−1
j X ′

j(θ̃j −Xjγ), (10)

where Cj is expressed by

Cj = X ′
jXj + σ2T−1, (11)

and Xj = (x′ij , · · · , x′njj)
′ and θ̃j = (θ̃ij , · · · , θ̃njj)′. The posterior moments for θij can be found

following

θ̃ij =
∫

θijP (θij |yij)dθij (12)

and

σ̃2
ij =

∫
(θij − θ̃ij)2P (θij |yij)dθij . (13)

Additionally, the posterior density p(θij |Y ) can be expressed following Bayes theorem as

P (θij |Y ) =
P (yij |θijt)φ(θij |xijγ,xijTx′

ij + σ2)∫
P (yij |θij)φ(θij |xijγ, xijTx′

ij + σ2)dθij
. (14)

Furthermore, T is a covariance matrix of random school effects,

T =




τ11 τ12 · · · τ1Q

τ21 τ22 · · · τ2Q

· · · · · · · · · · · ·
τQ1 τQ2 · · · τQQ




,

where the diagonal element τqq indicates the variance of random regression effects γqj for

q = 1, · · · , Q and across all schools j = 1, · · · , J and the off-diagonal elements τqq′ indicate the

covariance between two random effects (γqj and γq′j) for q, q′ = 1, · · · , Q. Appendix A provides

more details on how to obtain the estimates for the entries in the matrix T .
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4 Standard Errors

Standard errors for regression-effect estimates are often approximated by the posterior

variance of the regression effects estimates, which can in turn be approximated by the sum of the

variance resulting from sampling errors and the variance resulting from the latency of students’

abilities. Li and Oranje (2006) followed the derivations by Raudenbush and Bryk (2002, pp.

44–45) and suggested the generalized least squares estimator for fixed effects in the HLRM as

γ̂ =




J∑

j=1

X ′
jDjV

−1
θj

Xj



−1

J∑

j=1

X ′
jDjV

−1
θj

θj , (15)

where

Vθj = Var(θj) = XjTX ′
j + σ2I, (16)

and Dj is a diagonal matrix of student sampling weights. Hence, the variance covariance matrix

for fixed effect estimates γ̂ is

Var(γ̂) =




J∑

j=1

X ′
jDjV

−1
θj

Xj



−1

. (17)

Using (17) to compute standard errors for the fixed effects assumes that student abilities are

observed. In the HLRM, the variation due to the latency of the construct should be added; hence,

the variance Var(γ̂) is given by

Var(γ̂) = V




J∑

j=1

X ′
jDjV

−1
θj

(V θj
+ Σ̃j)V −1

θj
DjXj


V , (18)

where V =
(∑J

j=1 X ′
jDjV

−1
θj

Xj

)−1
. More details on the derivation of the standard error

estimates in the HLRM can be found in Section 3 in Li and Oranje (2006).

5 Subpopulation Characteristics Estimates

The HLRM is an efficient approach for obtaining accurate group-ability estimates from

test-response data, which is of primary interests for reporting of test results. The MML estimate

of the average proficiency for group G can be derived from the regression coefficient estimates

(Mazzeo, Donoghue, Li, & Johnson, 2005):

µ̂G = Γ̂
′
x̄′G, (19)
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where x̄′G is the sample mean vector of the background variables across examinees in group G,

x̄′G =
∑

i∈G wixi∑
i∈G wi

. (20)

The variance of the group mean estimate can be computed by

Var(µ̂G) = x̄GVar(Γ̂)x̄′G. (21)

The empirical Bayes estimate of the same quantity is given by

µ̃G =
∑

i∈G

wiµ̃i∑
i∈G wi

, (22)

where µ̃i is the mean for the posterior distribution for examinee i evaluated at Γ̂, Σ̂, and T̂ .

6 Simulation Design

In this simulation study, a 50-item test is generated under the 3PL item-response model (e.g.,

Lord, 1980) with discrimination parameters distributed as ai ∼ U(.5, 1.5), difficulty parameters as

bi ∼ N(0, 1), and asymptote parameters as ci ∼ U(0, .4) for i = 1, · · · , n. The realizations can be

found in Table 1. Two conditions for simulees and schools are employed with 2,000 and 5,000

simulees within 100 and 250 schools, respectively. That is, each school has 20 students whose

latent abilities are conditionally normal distributed and positively correlated. The correlation of

latent abilities of students from the same schools can be calculated from (5). These sample sizes

characterize the range of sample sizes for a typical state assessment in the National Assessment of

Educational Progress (NAEP).

In this study, the number of items n, the regression parameters γ and σ2, and the item

parameters are all fixed, with γ = (.25,−.12,−.83,−.63, .23, .41)′ for six student group indicators

(predictors) and σ2 = 0.5. Hence, only two variables are designed to vary: (a) the variance of

random effects T and (b) the sample size. For a given sample size, the only difference between the

HLRM and the LRM is the size of the cluster effects, which are assumed to be random effects in

the HLRM and fixed in the LRM with the result that T becomes a matrix with zeros.

As was noted in previous sections, the covariance matrix T of random effects across clusters

reflects the magnitude of the correlation between examinees within the same schools. The bigger

the magnitude of the diagonal entries in the matrix T , the larger the variation across clusters and

the larger the correlations between students within the same schools. Furthermore, the larger the
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Table 1
True Item Parameters

Item Discrimination a Difficulty b Asymptote c

1 0.953 -1.489 0.06
2 1.305 -0.128 0.131
3 0.684 -0.546 0.209
4 0.791 -0.898 0.213
5 0.696 1.535 0.067
6 1.322 -0.4 0.308
7 1.29 1.122 0.187
8 1.246 -0.713 0.262
9 0.736 0.649 0.269
10 0.802 1.016 0.11
11 0.989 -0.977 0.164
12 1.127 -1.162 0.178
13 1.21 -0.995 0.023
14 0.629 0.538 0.305
15 1.037 -0.449 0.339
16 0.66 0.722 0.181
17 0.615 -1.981 0.249
18 0.683 -1.018 0.072
19 0.802 0.132 0.298
20 1.399 0.381 0.065
21 1.349 0.362 0.259
22 0.609 -0.277 0.167
23 0.945 -1.295 0.232
24 1.315 0.731 0.241
25 1.346 1.208 0.25
26 1.256 -0.082 0.348
27 1.086 0.45 0.307
28 1.009 0.738 0.333
29 1.079 0.603 0.035
30 0.697 -0.964 0.311
31 0.897 0.578 0.259
32 1.279 0.535 0.307
33 1.213 -1.467 0.11
34 0.997 0.765 0.254
35 0.98 -0.266 0.011
36 1.325 -2.379 0.107
37 0.976 -0.018 0.143
38 0.847 -1.133 0.295
39 0.943 -1.064 0.341
40 0.683 -0.143 0.243
41 1.216 -0.065 0.266
42 1.146 1.462 0.05
43 0.6 -0.345 0.099
44 0.826 1.092 0.329
45 1.068 -0.028 0.065
46 1.386 0.548 0.335
47 0.618 0.256 0.205
48 0.872 0.883 0.294
49 1.113 -0.39 0.044
50 1.254 1.604 0.154
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off-diagonal components are in the matrix T , the stronger the associations are between regression

effects among clusters. In the simulation, three matrices are used, corresponding to strong,

moderate, and weak variation across clusters. Table 2 shows the values used.

Table 2
Design of the T Matrix

Condition Diagonal Off-diagonal
1 Strong .5 .2
2 Moderate .05 .02
3 Weak .005 .002

With six predictors in the latent regression, each T has dimension 6× 6. For each condition,

50 replications were conducted, resulting in 150 data sets for each of two sample sizes. The

predictors are independent Bernoulli variables where the first predictor is an intercept. These

variables are generated to represent typical group distributions such as gender and school lunch

eligibility.

For each parameter, the average estimate, the model-based and empirical standard error, and

the root mean squared deviation (RMSD) from the true parameter value will be computed to

indicate the recovery success. These statistics will be compared with their counterparts based on

a regular LRM.

7 Results

7.1 Parameter Recovery

Tables 3 and 4 show the true parameter values, the average parameter estimates, and the

average model-based standard error between parentheses using the HLRM and the LRM for

all three cluster variation conditions and both sample sizes across 50 replicates. The last three

columns show the RMSDs. Regression parameters are generally well recovered across conditions

and sample sizes for both models, which is reflected in both the averages and the RMSDs.

However, the residual variances are not well recovered under the LRM when variation across

clusters is strong or moderate and standard errors seem inadequate. Furthermore, in the strong

condition (i.e., Condition 1), RMSDs for regression parameters are substantially larger across both

models relative to the moderate and weak conditions, indicating less than desirable estimation
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results in general for that condition. This is not surprising as the effective sample size is drastically

reduced under the existence of considerable within-cluster dependencies. As expected, estimation

size is more accurate with a sample size of 5,000 than a sample size of 2,000, which is reflected in

the RMSDs.

Table 3
Parameter Recovery and Standard Errors Over 50 Replications

Size γ, σ2 True Mean (average standard error) RMSD
1 2 3 1 2 3

2,000 γ1 .25 .238 (.076) .241 (.037) .251 (.032) .097 .043 .036
γ2 -.12 -.094 (.072) -.124 (.040) -.124 (.035) .126 .051 .040
γ3 -.85 -.796 (.080) -.840 (.048) -.851 (.044) .142 .062 .051
γ4 -.63 -.576 (.092) -.620 (.064) -.633 (.058) .177 .077 .056
γ5 .23 .199 (.073) .226 (.043) .232 (.038) .098 .052 .037
γ6 .41 .362 (.072) .420 (.040) .406 (.035) .111 .046 .042
σ2 .50 .462 (.020) .464 (.020) .472 (.020) .043 .041 .034

5,000 γ1 .25 .262 (.048) .248 (.023) .256 (.020) .063 .027 .023
γ2 -.12 -.126 (.045) -.120 (.025) -.125 (.022) .055 .028 .021
γ3 -.85 -.812 (.050) -.847 (.031) -.853 (.027) .074 .034 .030
γ4 -.63 -.580 (.059) -.614 (.040) -.632 (.036) .122 .043 .041
γ5 .23 .224 (.047) .227 (.027) .235 (.024) .069 .025 .021
γ6 .41 .375 (.046) .405 (.025) .406 (.022) .060 .035 .018
σ2 .50 .458 (.010) .465 (.013) .487 (.011) .043 .037 .016

Comparing the RMSDs with the model-based standard errors shows that the model-based

standard errors seem on average to be underestimated. This is most noticeable for the residual

variance. However, this underestimation is is a result of bias and not the standard errors

themselves. To substantiate this finding further, Tables 5 and 6 present the standard deviation

(i.e., empirical standard error) for the parameter estimates over 50 replications for each condition,

which is in squared terms equivalent to the RMSD minus bias. As the tables show, the standard

deviations almost exactly match the model-based standard errors for both models for the

residual variances. However, the regression-effect standard errors are somewhat underestimated.

Comparing across sample sizes, it appears that the estimates based on 5,000 simulees are less

variable than the estimates based on 2,000 simulees, but not necessarily less biased.

Table 7 shows the average estimates for the elements of cluster variation matrix T under

the three conditions. In general, the T matrixs seem reasonably well recovered over the three
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Table 4
LRM Parameter Recovery and Standard Errors Over 50 Replications

Size γ, σ2 True Mean (Average standard error) RMSD
1 2 3 1 2 3

γ1 .25 .240 (.064) .240 (.037) .251 (.032) .095 .043 .036
γ2 -.12 -.099 (.069) -.125 (.040) -.124 (.034) .113 .051 .041
γ3 -.85 -.792 (.087) -.841 (.049) -.852 (.043) .129 .062 .051
γ4 -.63 -.578 (.118) -.617 (.066) -.634 (.058) .156 .076 .056
γ5 .23 .200 (.076) .228 (.043) .233 (.038) .090 .051 .037
γ6 .41 .365 (.071) .423 (.040) .407 (.035) .104 .046 .042

2,000 σ2 .50 2.279 (.325) .702 (.032) .523 (.018) 1.808 .205 .029
γ1 .25 .262 (.041) .248 (.023) .256 (.020) .061 .028 .023
γ2 -.12 -.126 (.044) -.121 (.025) -.126 (.022) .052 .028 .021
γ3 -.85 -.808 (.055) -.847 (.032) -.854 (.027) .068 .034 .030
γ4 -.63 -.578 (.074) -.614 (.042) -.632 (.036) .108 .043 .042
γ5 .23 .222 (.048) .227 (.027) .235 (.024) .061 .025 .021
γ6 .41 .378 (.045) .408 (.026) .407 (.022) .056 .024 .018

5,000 σ2 .50 2.306 (.114) .709 (.020) .522 (.011) 1.810 .210 .025

conditions. However, it appears that when the cluster variation is strong (i.e., Condition 1), the

elements of T tend to be underestimated. When the cluster variation is weak (i.e., Condition

3) the diagonal elements of T tend to be overestimated for the smaller sample size condition.

Logically, with more schools the between school variability can be estimated with greater accuracy.

More precisely, the accuracy of T depends on the number of clusters J . However, it seems most

notably to improve estimation of the diagonal elements. From Table 5, it also becomes clear that

for the elements from T , the variability associated with parameter estimates is larger in more

clustered samples, which is related to the effective sample size.

Special attention should be devoted to the residual variances, especially with respect to the

LRM estimates, which are, on average, 2.279, .702, and .523, where the true value is .500. It is

obvious that the residual variance estimates from LRM are inadequate and grossly overestimated

when the clustering is either moderate or strong. This result is not surprising since the LRM

does not account for the cluster variation. The implication, however, is that the variation across

clusters is left to the residual variance and, therefore, the estimates for the residual variances are

always overestimated in the presence of clustering. The result is that the standard errors under

the LRM are overestimated as well, which means that the difference between HLRM and LRM
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Table 5
HLRM Empirical Standard Errors Over 50 Replications

2,000 5,000
γ, σ2 1 2 3 1 2 3
γ1 .098 .042 .037 .062 .027 .022
γ2 .125 .051 .041 .055 .029 .021
γ3 .134 .062 .051 .064 .034 .030
γ4 .170 .077 .057 .112 .041 .042
γ5 .094 .052 .037 .069 .025 .020
γ6 .102 .045 .043 .050 .035 .017
σ2 .020 .020 .020 .010 .013 .011
τ11 .117 .015 .006 .060 .011 .001
τ22 .080 .017 .007 .036 .009 .001
τ33 .088 .025 .010 .050 .015 .001
τ44 .124 .040 .013 .054 .019 .001
τ55 .091 .022 .008 .044 .011 .001
τ66 .083 .019 .006 .047 .012 .001
τ12 .059 .011 .005 .031 .007 .001
τ13 .057 .012 .006 .036 .007 .001
τ14 .074 .017 .006 .042 .006 .001
τ15 .058 .011 .004 .031 .006 .001
τ16 .050 .013 .004 .030 .008 .001
τ23 .064 .013 .005 .030 .008 .001
τ24 .065 .018 .005 .033 .008 .001
τ25 .051 .013 .004 .027 .007 .001
τ26 .050 .013 .004 .029 .009 .001
τ34 .072 .020 .006 .042 .009 .000
τ35 .046 .016 .006 .035 .009 .001
τ36 .050 .014 .006 .030 .009 .001
τ45 .070 .016 .006 .039 .009 .001
τ46 .076 .018 .006 .033 .009 .001
τ56 .055 .014 .004 .030 .007 .001

standard errors is not necessarily a straightforward function of the degree of clustering.

7.2 Subgroup Means and Standard Errors

To investigate typical student group means and standard errors, two groups were constructed

using the second variable, x2, from the simulated predictors. Specifically, Group 1 contains

simulees with x2 = 1, and Group 2 contains those with x2 = 0. The distribution between these

groups is approximately uniform, reflecting a typical gender variable. Tables 8 through ?? present

12



Table 6
LRM Empirical Standard Errors Over 50 Replications

2,000 5,000
γ, σ2 1 2 3 1 2 3
γ1 .060 .046 .037 .057 .028 .022
γ2 .052 .051 .041 .065 .028 .021
γ3 .055 .062 .051 .064 .034 .030
γ4 .095 .076 .056 .077 .041 .042
γ5 .061 .051 .037 .056 .025 .020
γ6 .046 .044 .043 .069 .034 .017
σ2 .325 .032 .018 .113 .021 .015

Table 7
HLRM Parameters Recovery Over 50 Replications

2,000 5,000
γ, σ2 1 2 3 1 2 3
True .500 .050 .005 .500 .050 .005
τ11 .468 .039 .009 .472 .038 .004
τ22 .386 .045 .009 .376 .041 .004
τ33 .394 .046 .014 .382 .044 .004
τ44 .355 .062 .018 .389 .049 .004
τ55 .364 .042 .011 .369 .043 .004
τ66 .374 .039 .009 .383 .041 .004

True .200 .020 .002 .200 .020 .002
τ12 .156 .012 -.003 .155 .013 .001
τ13 .120 .009 -.003 .126 .014 .001
τ14 .117 .010 -.001 .118 .013 .001
τ15 .135 .012 -.002 .138 .014 .001
τ16 .140 .012 -.001 .144 .014 .001
τ23 .116 .014 .001 .119 .016 .001
τ24 .108 .014 .001 .111 .016 .001
τ25 .115 .014 .002 .122 .018 .001
τ26 .118 .018 .001 .118 .016 .001
τ34 .111 .016 .001 .116 .016 .001
τ35 .101 .015 .003 .113 .017 .001
τ36 .111 .020 .002 .112 .015 .001
τ45 .100 .013 .001 .115 .019 .001
τ46 .086 .015 .001 .106 .016 .001
τ56 .117 .014 .002 .122 .018 .001
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the MML estimates of means and standard errors following (19) and (21), respectively. The

statistics for the two groups are based on both the LRM and the HLRM for sample sizes equal to

5,000 and for all three conditions of cluster variation. Similar results were obtained with sample

sizes equal to 2,000 and, hence, are not reported in this paper. The results in the three tables

show that most of the difference in subgroup mean estimates among the replicated 50 data sets

are trivial between the HLRM and the LRM.

Table 8
Subpopulation (x2) Means Estimates Over Condition 1 (5,000)

HLRM LRM
Data x2 = 1 SE x2 = 0 SE x2 = 1 SE x2 = 0 SE

1 .256 .091 .343 .068 .26 .032 .346 .032
2 .263 .091 .317 .064 .263 .031 .319 .033
3 .17 .091 .353 .065 .17 .032 .353 .032
4 .312 .087 .432 .063 .313 .031 .436 .03
5 .144 .085 .237 .065 .144 .031 .238 .031
6 .266 .09 .352 .064 .265 .032 .354 .031
7 .124 .089 .283 .065 .124 .031 .285 .031
8 -.024 .087 .203 .065 -.018 .032 .195 .031
9 .194 .088 .276 .064 .19 .031 .283 .031

10 .081 .095 .253 .066 .088 .033 .245 .032
11 .154 .089 .312 .067 .156 .032 .313 .031
12 -.029 .089 .158 .066 -.026 .032 .156 .032
13 .033 .09 .279 .064 .041 .031 .273 .031
14 .109 .091 .246 .066 .11 .032 .248 .032
15 .123 .09 .211 .067 .121 .032 .216 .032
16 .105 .087 .246 .06 .106 .03 .245 .031
17 .016 .089 .137 .066 .013 .032 .141 .032
18 .152 .087 .202 .061 .149 .031 .208 .03
19 .254 .086 .338 .063 .256 .031 .339 .031
20 .073 .095 .221 .068 .077 .033 .22 .033
21 .051 .085 .26 .06 .051 .031 .263 .03
22 .198 .085 .303 .06 .2 .03 .3 .03
23 .233 .087 .355 .064 .234 .032 .354 .031
24 .159 .087 .319 .064 .161 .031 .322 .031
25 .142 .084 .314 .059 .144 .03 .316 .03
26 .014 .089 .203 .067 .012 .032 .208 .031
27 .18 .088 .243 .062 .18 .031 .244 .031
28 .352 .084 .393 .06 .351 .03 .398 .03

Table continues
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Table 8 (continued)

HLRM LRM
Data x2 = 1 SE x2 = 0 SE x2 = 1 SE x2 = 0 SE
29 .194 .088 .253 .062 .191 .031 .26 .031
30 .085 .084 .253 .061 .091 .031 .249 .03
31 .1 .086 .258 .06 .099 .031 .264 .03
32 .162 .089 .283 .061 .159 .031 .291 .031
33 .035 .088 .312 .065 .039 .031 .307 .031
34 .057 .087 .266 .062 .062 .031 .263 .031
35 .066 .096 .204 .068 .072 .033 .202 .033
36 .001 .088 .216 .065 .004 .031 .216 .031
37 .12 .084 .257 .06 .124 .03 .254 .03
38 .146 .09 .288 .065 .149 .032 .288 .031
39 .187 .089 .335 .062 .191 .031 .331 .031
40 .186 .092 .285 .065 .188 .032 .287 .032
41 .185 .093 .269 .067 .183 .032 .274 .032
42 .039 .087 .245 .066 .041 .031 .242 .031
43 .152 .09 .293 .063 .153 .032 .296 .031
44 .104 .085 .241 .06 .103 .03 .246 .031
45 -.059 .084 .179 .062 -.06 .03 .18 .03
46 .186 .088 .292 .065 .183 .031 .299 .032
47 .186 .083 .328 .057 .184 .03 .337 .03
48 .125 .093 .224 .068 .124 .032 .226 .033
49 .013 .086 .211 .063 .013 .031 .212 .031
50 .138 .092 .221 .067 .137 .033 .227 .031

Table 9
Subpopulation (x2) Means Estimates Over Condition 2 (5,000)

HLRM LRM
Data x2 = 1 SE x2 = 0 SE x2 = 1 SE x2 = 0 SE

1 .103 .029 .279 .024 .103 .017 .28 .018
2 .128 .035 .246 .026 .128 .018 .246 .019
3 .189 .031 .309 .026 .19 .018 .311 .018
4 .104 .034 .185 .024 .105 .018 .186 .018
5 .14 .031 .269 .023 .14 .018 .27 .017
6 .188 .034 .257 .025 .186 .018 .258 .018
7 .113 .031 .256 .024 .114 .017 .256 .018
8 .137 .033 .3 .025 .137 .018 .3 .018

(Table continues)
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Table 9 (continued)

HLRM LRM
Data x2 = 1 SE x2 = 0 SE x2 = 1 SE x2 = 0 SE

9 .115 .033 .212 .024 .116 .018 .212 .018
10 .144 .031 .259 .024 .147 .018 .258 .018
11 .105 .032 .28 .024 .105 .018 .281 .018
12 .195 .033 .314 .025 .196 .018 .316 .018
13 .145 .032 .249 .023 .145 .018 .25 .018
14 .161 .034 .251 .026 .161 .018 .252 .018
15 .05 .034 .191 .026 .049 .019 .192 .018
16 .104 .031 .261 .022 .104 .018 .263 .018
17 .105 .032 .25 .024 .105 .018 .252 .018
18 .105 .031 .252 .024 .106 .018 .255 .018
19 .119 .032 .29 .024 .12 .018 .29 .018
20 .194 .032 .305 .025 .195 .018 .307 .018
21 .11 .031 .231 .026 .108 .018 .233 .018
22 .131 .031 .291 .023 .132 .018 .291 .017
23 .138 .032 .269 .024 .139 .018 .27 .018
24 .164 .031 .281 .025 .164 .018 .281 .018
25 .084 .031 .252 .026 .084 .018 .254 .018
26 .091 .03 .259 .024 .09 .018 .259 .018
27 .152 .034 .293 .026 .153 .018 .294 .018
28 .143 .032 .289 .024 .144 .018 .288 .018
29 .067 .03 .248 .023 .066 .017 .248 .017
30 .1 .032 .252 .022 .101 .018 .252 .018
31 .131 .031 .25 .024 .133 .018 .25 .017
32 .079 .032 .283 .024 .082 .018 .284 .018
33 .129 .028 .239 .024 .127 .017 .24 .018
34 .151 .031 .249 .023 .151 .018 .249 .017
35 .042 .03 .222 .022 .04 .017 .222 .017
36 .162 .031 .282 .024 .161 .017 .284 .018
37 .112 .029 .24 .024 .111 .018 .24 .017
38 .139 .033 .293 .026 .139 .018 .295 .018
39 .123 .03 .248 .023 .123 .017 .248 .018
40 .169 .032 .27 .023 .168 .018 .271 .018
41 .133 .031 .244 .026 .133 .018 .245 .018
42 .042 .031 .219 .024 .043 .018 .218 .017
43 .106 .031 .235 .025 .107 .018 .236 .018
44 .114 .032 .249 .026 .115 .018 .248 .018
45 .14 .033 .282 .024 .14 .018 .282 .018
46 .177 .03 .305 .025 .176 .018 .307 .018
47 .131 .032 .254 .024 .131 .018 .254 .018
48 .122 .032 .231 .025 .121 .018 .231 .018
49 .122 .032 .24 .024 .121 .018 .24 .018
50 .116 .032 .267 .024 .117 .018 .268 .018
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Table 10
Subpopulation (x2) Means Estimates Over Condition 3 (5,000)

HLRM LRM
Data x2 = 1 SE x2 = 0 SE x2 = 1 SE x2 = 0 SE

1 .144 .017 .276 .016 .143 .015 .277 .015
2 .15 .017 .271 .016 .149 .015 .271 .016
3 .121 .017 .284 .017 .121 .015 .284 .016
4 .142 .018 .282 .016 .142 .015 .282 .015
5 .134 .017 .254 .016 .134 .015 .254 .015
6 .148 .017 .262 .016 .149 .016 .262 .015
7 .144 .017 .283 .016 .144 .016 .283 .016
8 .116 .017 .237 .016 .115 .015 .237 .015
9 .156 .017 .264 .016 .156 .016 .264 .016

10 .123 .017 .269 .016 .123 .016 .269 .015
11 .12 .017 .266 .016 .12 .015 .265 .015
12 .105 .017 .255 .016 .104 .015 .255 .016
13 .109 .016 .286 .015 .108 .015 .286 .015
14 .121 .017 .284 .016 .121 .015 .284 .015
15 .126 .016 .267 .016 .126 .015 .267 .015
16 .117 .016 .23 .016 .116 .015 .23 .016
17 .086 .018 .228 .016 .086 .016 .228 .016
18 .132 .017 .236 .016 .133 .016 .236 .015
19 .169 .017 .284 .016 .168 .016 .285 .015
20 .109 .017 .269 .016 .109 .016 .27 .016
21 .123 .017 .302 .016 .123 .016 .301 .015
22 .144 .017 .248 .016 .143 .015 .248 .015
23 .138 .017 .268 .016 .137 .016 .268 .015
24 .126 .017 .298 .016 .125 .015 .298 .015
25 .125 .017 .247 .016 .125 .015 .247 .015
26 .093 .018 .252 .016 .094 .016 .25 .015
27 .109 .018 .283 .016 .108 .016 .284 .016
28 .144 .016 .261 .016 .144 .015 .26 .015
29 .138 .018 .286 .016 .137 .016 .286 .015
30 .145 .017 .262 .015 .144 .015 .262 .015
31 .124 .016 .261 .015 .123 .015 .262 .015
32 .119 .018 .261 .017 .118 .016 .261 .016
33 .156 .017 .288 .016 .155 .015 .289 .015
34 .135 .017 .276 .016 .134 .015 .277 .015
35 .126 .017 .267 .017 .126 .015 .267 .016
36 .113 .017 .26 .016 .114 .015 .26 .015

(Table continues)
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Table 10 (continued)

HLRM LRM
Data x2 = 1 SE x2 = 0 SE x2 = 1 SE x2 = 0 SE
37 .109 .017 .263 .016 .108 .015 .264 .015
38 .141 .017 .248 .016 .14 .016 .248 .015
39 .115 .017 .278 .016 .114 .015 .278 .015
40 .127 .017 .267 .016 .127 .015 .267 .015
41 .127 .016 .295 .016 .127 .015 .294 .015
42 .115 .016 .265 .016 .114 .015 .266 .015
43 .125 .017 .283 .016 .125 .016 .283 .016
44 .138 .017 .266 .016 .139 .015 .265 .016
45 .108 .018 .252 .016 .109 .015 .252 .015
46 .139 .017 .282 .016 .139 .015 .282 .016
47 .133 .016 .283 .016 .132 .015 .283 .015
48 .137 .018 .245 .016 .137 .016 .245 .016
49 .104 .018 .272 .017 .103 .016 .272 .016
50 .118 .017 .255 .016 .118 .016 .255 .015

The standard errors are different between the two models. Where the LRM only shows

moderate increase in the standard errors with increasing clustering, mainly due to inflation as

a result of imprecise residual variance estimation, the HLRM increase is substantial, seemingly

appropriately accounting for the complex sample design. The reason is that, in (18), T contributes

to the standard error estimation in the HLRM, outweighing the inflation in the LRM approach.

As expected, under the weak intracluster correlation condition, estimates between both models

are largely equivalent.

The MML subgroup mean estimates are directly affected by the regression effect estimates,

which are in turn functions of the posterior mean estimates. The fact that the group means are

similar between the HLRM and the LRM implies that posterior mean estimates are similar across

the two models. Figures 1 through 3 are plots of the regression parameter estimates between the

HLRM and the LRM for 50 replicates, showing that the difference between the models decreases

as the cluster variation decreases. Similarly, Figures 4 through 6 are plots of student’s posterior

mean estimates between the HLRM and the LRM for the first four data sets. As expected, for

weak cluster variation the estimates are more similar between the two models than for strong

cluster variation.

The standard errors for subgroup means estimates are functions of the variance of the

regression effect estimates, which are in turn related to the residual variance estimate and the

18



posterior variance estimates for all students. Figures 7 through 9 show the plots of each students’

posterior variance estimate between the HLRM and the LRM across the three different conditions

of cluster variation for the first four data sets. It appears that, similar to the posterior means, for

strong cluster variation students’ posterior variance estimates are quite different between the two

models but similar when this variation is weak. When they are different, they are larger for the

LRM because the posterior means are estimated less accurately.

8 Conclusion and Discussion

In this simulation study, an HLRM has been evaluated for parameter recovery and compared

against a regular LRM. The study provides some empirical evidence to support several conclusions

about HLRM parameter estimation. Compared to the LRM, the HLRM explicitly provides a

mechanism to account for the variation across clusters (i.e., the variance matrix T ), which is

often substantial in educational survey assessments. Models such as the LRM often ignore the

clustering, probably due to lack of an appropriate model, resulting in overestimation of residual

variances.

In general, regression effect estimates are very similar between the HLRM and the LRM

for a wide range of clustering levels such as those employed in this study. for other parameters,

however, some differences emerge when the variation across clusters becomes strong. Similar to

hierarchical linear models, the estimates for fixed regression effects are unbiased for any sample

size (Raudenbush & Bryk, 2002, pp. 281). The residual variance estimates for the HLRM are

reasonably well captured, as reflected in relatively small root mean squared deviations. However,

the residual variances for the LRM are severely overestimated, in particular when the cluster

variation is strong. This can be attributed to the fact that the LRM does not account for the

cluster variation; hence, the variation across clusters becomes largely part of the residual variance.

As a result, the advantage of the HLRM over the LRM with respect to the estimation and

interpretation of the variance structure pertains predominantly to the estimation of standard

errors.

The components of the cluster variation matrix T seem reasonably well-estimated. They tend

to be underestimated when the cluster variation is strong and overestimated when the cluster

variation becomes small. However, the degree of over- and underestimation is relatively small. It

also should be noted that cluster variation is better estimated with a larger number of clusters.
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Figure 1 Plots of estimates of regression effect parameters over 50 replications in

Condition 1.
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Figure 2 Plots of estimates of regression effect parameters over 50 replications in

Condition 2.
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Figure 3 Plots of estimates of regression effect parameters over 50 replications in

Condition 3.
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Figure 4 Plots of estimates of posterior means Data 1 to 4 in Condition 1.

23



Data 1 Posterior Means

Posterior Means (HLRM)

P
o

s
te

ri
o

r 
M

e
a

n
s
 (

L
R

M
)

-2 -1 0 1 2

-2
-1

0
1

2

Data 2 Posterior Means

Posterior Means (HLRM)

P
o

s
te

ri
o

r 
M

e
a

n
s
 (

L
R

M
)

-2 -1 0 1 2

-2
-1

0
1

2

Data 3 Posterior Means

Posterior Means (HLRM)

P
o

s
te

ri
o

r 
M

e
a

n
s
 (

L
R

M
)

-3 -2 -1 0 1 2

-2
-1

0
1

2

Data 4 Posterior Means

Posterior Means (HLRM)

P
o

s
te

ri
o

r 
M

e
a

n
s
 (

L
R

M
)

-2 -1 0 1 2

-2
-1

0
1

2

 

Figure 5 Plots of estimates of posterior means Data 1 to 4 in Condition 2.
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Figure 6 Plots of estimates of posterior means Data 1 to 4 in Condition 3.
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Figure 7 Plots of estimates of posterior variance Data 1 to 4 in Condition 1.
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Figure 8 Plots of estimates of posterior variance Data 1 to 4 in Condition 2.
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Figure 9 Plots of estimates of posterior variance Data 1 to 4 in Condition 3.
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The small differences between regression effect estimates across the HLRM and the LRM is

also reflected in the student posterior means. In turn, this fact reflects on group mean estimates,

which are a function of the posterior means for Bayes estimates and a function of the regression

estimates for marginal maximum likelihood estimates. Hence, the group mean estimates between

the HLRM and the LRM are quite similar. However, the posterior variance estimates for students

differ substantially between the HLRM and the LRM, in particular under moderate to severe

clustering.

The standard errors for the regression effects estimates between the HLRM and the LRM

differ for various conditions of cluster variation. Typically, the standard errors for the regression

effects are somewhat larger in the HLRM than those in the LRM. This difference is more

pronounced under strong cluster variation. The simulation showed that the standard error

estimates in both the HLRM and the LRM are underestimated compared to the empirical standard

error. However, this underestimation reduces with increasing sample size, and the limited number

of replications might not provide the most accurate assessment of empirical standard errors. It

should be pointed out that, contrary to expectation, the relationship between the standard errors

from the HLRM and the LRM are relatively close. This is mostly due to the fact that the residual

variance is inflated in the LRM, which in turn inflates standard errors that are a function of the

residual variance. Hence, if the residual variances in the LRM were accurately estimated, then the

standard errors for the regression effects would be much smaller than those in Tables 3 and 4, in

particular for moderate and strong clustering.

While the standard errors of the regression effects are similar between the HLRM and the

LRM, the standard errors for group mean estimates are not similar; in fact, they are substantially

larger under the HLRM, especially when cluster variation is moderate or strong. Because the

regression-effect standard errors are similar across the models, the only difference in computing the

standard errors following (21) are the off-diagonal elements of Var(Γ̂). Hence, a likely explanation

for the differences observed in this study is that the LRM also inflates the estimates of the

covariances between regression effects, resulting in underestimated group mean standard errors.

Note that in this simulation, although two overall sample sizes were used, the sample size

for each school was the same across conditions. This is known as a balanced design in the HLM.

Standard errors estimates for an unbalanced design will generally be smaller than those seen in

this simulation study.
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Appendix A

Parameter Estimation for HLRM

In the univariate case, γ is a Q-dimensional vector of regression coefficients (γ1, · · · , γQ)′.

Let xij be the collection (or a row) of background variables for student i in school j for scale p

and Xj is a matrix of background variables of all examinees in cluster j for j = 1, · · · , J , (i.e.,

Xj = [x′1j |, · · · , |x′njj ]′ is an nj × Q matrix). Then the likelihood function L for N students’

responses Y to n items in a test is the total marginal likelihood, and is expressed as

L = log




J∏

j=1

P (yj |Xjγ, T , σ2)wj




=
J∑

j=1

wj log
[
P (yj |Xjγ, T , σ2)

]

=
J∑

j=1

wj log
[∫

P (yj |θ, u)φ(θ, u|Xjγ, T , σ2)dθdu

]
. (A1)

φ(θ|Xjγ + Xjuj , σ
2) represents the conditional multivariate normal density with mean vector

Xjγ + Xjuj and covariance matrix σ2Inj ; that is, θ|uj ∼
N (Xjγ +Xjuj , σ

2Inj ). If the expectation of θ is denoted by µθ = Xjγ +Xjuj , then the density

function is given by

φ(θ|µθ, σ
2Inj ) =

1

(2π)
nj
2 |σ2Inj |

1
2

exp
[
−1

2
(θ − µθ)

′(σ2Inj )
−1(θ − µθ)

]
. (A2)

The partial derivative of logφ(θ|µθ, σ
2Inj ) with respect to γ is

∂logφ(θ|µθ, σ
2)

∂γ
= σ−2X ′

j(θ −Xjγ −Xjuj). (A3)
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Therefore,

∂L

∂γ
=

J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
∂φ(θ,u)

∂γ
dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
∂φ(θ|u)p(u)

∂γ
dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
p(u)φ(θ|u)

∂logφ(θ|u)
∂γ

dθdu

=
J∑

j=1

wj

∫
P (yj |θ)φ(θ)p(u|θ)

P (yj)
σ−2X ′

j(θ −Xjγ −Xjuj)dθdu

=
J∑

j=1

wj

∫
P (θ|yj)σ

−2X ′
j(θ −Xjγ −Xjūj)dθ

=
J∑

j=1

wjσ
−2X ′

j(θ̃ −Xjγ −Xjũj), (A4)

wherein equation (A4), ūj = (ūj1, · · · , ūjQ)′, is the conditional expectation of uj over φ(u|θ).

ūj =
∫

u
ujφ(u|θ)du, (A5)

and the vector form of ũj can be expressed as

ũj =
∫

θ
ūjP (θ|yj)dθ

=
∫

θ

∫

u
ujφ(u|θ)P (θ|yj)dudθ. (A6)

Therefore, setting equation (A4) equal to 0 and solving for γ̂ yields

γ̂ =




J∑

j=1

wjX
′
jXj



−1

J∑

j=1

wjX
′
j(θ̃j −Xjũj). (A7)
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To obtain the estimates for σ2, it follows that

∂L

∂σ2
=

J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
∂φ(θ,u)

∂σ2
dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
∂φ(θ|u)p(u)

∂σ2
dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
p(u)φ(θ|u)

∂logφ(θ|u)
∂σ2

dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
φ(θ)φ(u|θ)

∂logφ(θ|u)
∂σ2

dθdu

=
J∑

j=1

wj

∫
P (θ|yj)φ(u|θ)

∂logφ(θ|u)
∂σ2

dθdu (A8)

=
J∑

j=1

wj

∫
P (θ|yj)P (u|θ)

nj∑

i=1

∂logφ(θij |u)
∂[σ2]

dθdu. (A9)

Now it becomes more convenient to find the derivatives of logφ(θij |µθ, σ
2) with respect to σ2:

∂logφ(θij |µθ, σ
2)

∂[σ2]
= −1

2
[σ2]−1 +

1
2
[σ2]−2(θij − γ ′x′ij − u′jx

′
ij)

2. (A10)

Setting the above equation equal to 0 yields:

σ2
J∑

j=1

wjnj =
J∑

j=1

wj

∫
P (θ|yj)φ(u|θ)

nj∑

i=1

(θij − µθ)(θij − µθ)dθdu. (A11)

To evaluate the equation above, it is necessary to find the expression for the integration

C =
∫

P (θ|yj)P (u|θ)
nj∑

i=1

(θij − µθ)(θij − µθ)′dθdu

=
∫

P (θ|yj)P (u|θ)(θj − γ ′X ′
j − u′jX

′
j)
′(θj − γ ′X ′

j − u′jX
′
j)dθdu, (A12)

which relies on the integration to the quadratic form (θj − γ ′X ′
j)
′XjC

−1
j X ′

j(θj − γ ′X ′
j) and the

integration of term of uju
′
j , which is denoted by D for the time being. The integration of the later

term will not be discussed here but will be included in the section discussing parameter matrix T
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estimation. For integrating the quadratic term, follow the theorem by Stapleton (1995, p. 51),

$ =
∫

P (θ|yj)P (u|θ)(θj − γ ′X ′
j)
′XjC

−1
j X ′

j(θj − γ ′X ′
j)dθdu

= (θ̃j − γ ′X ′
j)
′XjC

−1
j X ′

j(θ̃j − γ ′X ′
j) + trace(XjC

−1
j X ′

jΣ̃j)

= (θ̃j − γ ′X ′
j)
′Xjũj + trace(XjC

−1
j X ′

jΣ̃j)

=
nj∑

i=1

[
(θ̃ij − γ ′x′ij)

′xijũj

]
+ trace(XjC

−1
j X ′

jΣ̃j). (A13)

Σ̃j is a diagonal block matrix with posterior variance for each student within cluster j = 1, · · · , J

as the diagonal block component. Substituting the integration (A12) gives the MML estimates for

σ2:

σ̂2 =

∑J
j=1 wj

∑nj

i=1

[
σ̃ij + (θ̃ij − γ ′x′ij)(θ̃ij − γ ′x′ij)

′ + xijD̃x′ij − 2$
]

∑J
j=1 wjnj

. (A14)

For estimating the variance matrix T for random effects, follow the same procedure used to

estimate the residual variance matrix [σ2]:

∂L

∂T
=

J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
∂φ(θ, u)

∂T
dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
∂φ(θ|u)p(u)

∂T
dθdu

=
J∑

j=1

wj

∫
P (yj |θ, u)

P (yj)
p(u)φ(θ|u)

∂logP (u)
∂T

dθdu

=
J∑

j=1

wj

∫
P (yj , θ,u)

P (yj)
∂logP (u)

∂T
dθdu

=
J∑

j=1

wj

∫
P (θ|yj)P (u|θ)

∂logP (u)
∂T

dθdu. (A15)

The derivative of logP (u) with respect to T can be simplified as:

∂logP (u)
∂T

=
1
2
diag

[
T−1 − T−1uu′T−1

]− [
T−1 − T−1uu′T−1

]

=
1
2
diag

[
T−1(T − uu′)T−1

]− [
T−1(T − uu′)T−1

]
. (A16)

Hence,

∂L

∂T
=

1
2

J∑

j=1

wj

(
diag

[
T−1(T − E)T−1

]− [
T−1(T − E)T−1

])
. (A17)
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where E indicates the following integration:

E =
1∑J

j=1 wj

J∑

j=1

wj

∫
P (θ|yj)P (u|θ)uu′dθdu, (A18)

This is similar to A12 and can be written as:

E
J∑

j=1

wj =
j∑

j=1

wj

∫
P (θ|yj)P (u|θ)uu′dθdu

=
j∑

j=1

wj

[
Var(u|θ) +

∫
P (θ|yj)ūū′dθdu

]

=
j∑

j=1

wj

[
Var(u|θ) + ũjũ

′
j + C−1

jt X ′
jΣ̃jXjC

−1
jt

]
, (A19)

where ū in A21 stands for the conditional expectation of uj given students’ abilities in cluster j

(i.e. θj):

ū =
∫

ujP (uj |θj)duj . (A20)

For one subscale case,

E
J∑

j=1

wj =
j∑

j=1

wj

[
C−1

jt σ2 + ũjũ
′
j + C−1

jt X ′
j

[
σ̃2

ij

]
XjC

−1
jt

]
. (A21)

Thus, T can be estimated by setting A17 equal to zero and obviously having T = E,

T̂ =
1∑J

j=1 wj

j∑

j=1

wj

[
C−1

jt σ2 + ũjũ
′
j + C−1

jt X ′
j

[
σ̃2

ij

]
XjC

−1
jt

]
. (A22)
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Appendix B

Extension to More General Two-Level Hierarchical Linear Models

For one subscale case, suppose that the Level 2 model is conditional on a set of school/cluster

characteristic variables, V j . Then the model is:

γj = V jγ + uj , (B1)

and the combined model becomes

θjt = XjV jγ + Xjuj + εj . (B2)

In general, Raudenbush and Bryk (2002) suggested writing the two-level HLM as:

θjt = Afjγ + Arjuj + εj . (B3)

By following the same procedure developed above, it is possible to obtain parameter estimates for

a general two-level HLRM.
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Appendix C

Assumptions

C1: IRT local dependence assumption.

C2: The assumption of Level 1 random variable εij ∼ i.i.d.N(0, σ2); Level 2 random variable

uj ∼ i.i.d.N(0, T ); and εij is independent with uj for i = 1, · · · , nj , j = 1, · · · , J .

C3: The abilities of students within the same clusters are not necessarily independent; rather,

the abilities of students within the same clusters are independent if the cluster effects are controlled.

If the assumption on A2 holds, it follows naturally that φ(θij |uj) ∼ i.i.d.N(γ ′x′ij + u′jx
′
ij , σ

2).

Obviously, φ(θj |uj) can be written as the product of φ(θij |uj) for abilities θij of students within

the same cluster. Intuitively, this assumption makes sense. After cluster effects are accounted for,

student abilities can be considered independent of each other.
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Appendix D

Alternative Numerical Integration

The univariate estimation methodology can easily be extended to the multivariate case,

which is detailed in Li and Oranje (2006). The posterior mean θ̃i and posterior variance Σ̃j

for j = 1, · · · , J can be obtained through a multivariate numerical quadrature. A relatively

efficient alternative is a procedure for asymptotic corrections of multivariate posterior moments

using a factored likelihood function (Thomas, 1993). Let h(θj) be proportional to the posterior

distribution of θj ; that is,

h(θj) = −log [f(yi|θ)φ(θ)] , (D1)

where

logf(yj |θ) =
nj∑

k=1

n∑

i=1

[yiklogPk(θik) + (1− yik)log(1− Pk(θik))] , (D2)

with Pk(θik) a specified item response model (e.g., the 3PL model). The joint distribution for θ is

φ(θ) =
1

(2π)
nj
2 |4j |

1
2

e−
1
2
(θj−Xjγ)′4−1

j (θj−Xjγ). (D3)

The covariance matrix in (D3), 4j , is given by

4j = XjTX ′
j + σ2Inj . (D4)

The first step to maximize h(θj) is to find the partial derivative of h(θj) with respect to θj ,

which can be expressed as

∂h(θj)
∂θj

= −diag
(
h1(θ1), · · · , hk(θk), · · · , hnj (θnj )

)
+ 4−1

j (θj −Xjγ). (D5)

Due to the factored likelihood function in (D2), the first part of the partial derivative in (D5) is a

diagonal matrix with diagonal elements

hk(θk) =
n∑

i=1

(
yik

Pi(θik)
− 1− yik

1− Pi(θik)

)
P ′

i (θik). (D6)

The second derivative of h(θj) with respect to θj can be further simplified and expressed as

∂h2(θj)
∂θ2

j

= −diag
(

∂h1(θ1)
∂θ1

, · · · ,
∂hk(θk)

∂θk
, · · · ,

∂hnj (θnj )
∂θnj

)
+ 4−1

j . (D7)

38



The diagonal part of the second derivative in (D7) is

∂hk(θk)
∂θk

=
n∑

i

(
yik(Dai)2cieDL

(ci + eDL)2
− Dai

1− ci
P ′

i (θik)
)

, (D8)

where D is the scaling factor in the 3PL model, L = ai(θik − bi), and P ′
i (θik) is the derivative of

Pi(θik) with respect to θk; that is,

P ′
i (θik) =

∂Pi(θik)
∂θk

=
Dai

1− ci
(1− Pi(θik))(Pi(θik)− ci). (D9)

The Newton-Raphson or Fisher scoring algorithm can be used to find the posterior mode

θ̃j and covariance Σ̃j evaluated at this mode. Further asymptotic corrections follow similar to

Thomas (1993).
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